Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Mol Ther ; 32(5): 1510-1525, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454605

ABSTRACT

The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin ß2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin ß2 interaction. Overall, our findings reveal that eCypA-integrin ß2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.


Subject(s)
COVID-19 , Cyclophilin A , Cyclophilin A/metabolism , Animals , Humans , Mice , COVID-19/metabolism , COVID-19/virology , COVID-19/immunology , CD18 Antigens/metabolism , SARS-CoV-2 , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/immunology , Cytokines/metabolism , Antibodies, Monoclonal/pharmacology , Signal Transduction , Influenza A virus , Disease Models, Animal
2.
iScience ; 26(12): 108515, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38089580

ABSTRACT

Influenza B circulates annually and causes substantial disease burden in humans. However, little is known about the infection mechanisms of influenza B virus (IBV). Here, we find that the host factor cyclophilin A (CypA) facilitates IBV replication by targeting IBV non-structural protein 1 (BNS1) and nucleoprotein (BNP). CypA promotes OTUD4-mediated K48-linked BNS1 deubiquitination to stabilize BNS1 by upregulating OTUD4 expression. Meanwhile, CypA and the E3 ligase MIB1 competitively interact with BNP to inhibit its proteasomal degradation. Moreover, cyclosporine A treatment or CypA R55A mutation results in an impaired function of CypA in IBV replication. Notably, BNP hijacks CypA into the nucleus to enhance the activity of viral ribonucleoprotein complexes by enhancing the interaction between BNP and IBV polymerase basic protein 1. Taken together, this study unveils the critical role of CypA in facilitating IBV replication, suggesting that CypA is a promising target for anti-IBV drug.

3.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4809-4823, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38147983

ABSTRACT

In order to understand the prevalence and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) in China and to develop subunit vaccine against the epidemic lineage, the genetic evolution analysis of PRRSV strains isolated in China from 2001 to 2021 was performed. The representative strains of the dominant epidemic lineage were selected to optimize the membrane protein GP5 and M nucleotide sequences, which were used, with the interferon and the Fc region of immunoglobulin, to construct the eukaryotic expression plasmids pCDNA3.4-IFNα-GP5-Fc and pCDNA3.4-IFNα-M-Fc. Subsequently, the recombinant proteins IFNα-GP5-Fc and IFNα-M-Fc were expressed by HEK293T eukaryotic expression system. The two recombinant proteins were mixed with ISA206VG adjuvant to immunize weaned piglets. The humoral immunity level was evaluated by ELISA and neutralization test, and the cellular immunity level was detected by ELISPOT test. The results showed that the NADC30-like lineage was the main epidemic lineage in China in recent years, and the combination of IFNα-GP5-Fc and IFNα-M-Fc could induce high levels of antibody and cellular immunity in piglets. This study may facilitate the preparation of a safer and more effective new PRRSV subunit vaccine.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Vaccines , Humans , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine Reproductive and Respiratory Syndrome/prevention & control , HEK293 Cells , Viral Envelope Proteins/genetics , Antibodies, Viral , Viral Vaccines/genetics , Recombinant Proteins , Vaccines, Subunit
4.
Microorganisms ; 11(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37630565

ABSTRACT

Salmonella enterica subsp. enterica serovar Typhimurium (S. typhimurium) is an important zoonotic pathogen with important public health significance. To understand S. typhimurium's epidemiological characteristics in China, multi-locus sequence typing, biofilm-forming ability, antimicrobial susceptibility testing, and resistant genes of isolates from different regions and sources (human, food) were investigated. Among them, ST34 accounted for 82.4% (243/295), with ST19 ranking second (15.9%; 47/295). ST34 exhibited higher resistance levels than ST19 (p < 0.05). All colistin, carbapenem, and ciprofloxacin-resistant strains were ST34, as were most cephalosporin-resistant strains (88.9%; 32/36). Overall, 91.4% (222/243) ST34 isolates were shown to have multidrug resistance (MDR), while 53.2% (25/47) ST19 isolates were (p < 0.05). Notably, 97.8% (45/46) of the MDR-ACSSuT (resistance to Ampicillin, Chloramphenicol, Streptomycin, Sulfamethoxazole, and Tetracycline) isolates were ST34, among which 69.6% (32/46) of ST34 isolates were of human origin, while 30.4% (14/46) were derived from food (p < 0.05). Moreover, 88.48% (215/243) ST34 showed moderate to strong biofilm-forming ability compared with 10.9% (5/46) ST19 isolates (p < 0.01). This study revealed the emergence of high-level antibiotic resistance S. typhimurium ST34 with strong biofilm-forming ability, posing concerns for public health safety.

5.
Autophagy ; 19(12): 3113-3131, 2023 12.
Article in English | MEDLINE | ID: mdl-37482689

ABSTRACT

ABBREVIATIONS: aa: amino acid; ATF6: activating transcription factor 6; ATG5: autophagy related 5; CCPG1: cell cycle progression 1; CFTR: CF transmembrane conductance regulator; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CHX: cycloheximide; Co-IP: co-immunoprecipitation; CQ: chloroquine; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GFP: green fluorescent protein; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; HSV-1: herpes simplex virus type 1; IFIT1: interferon induced protein with tetratricopeptide repeats 1; IFNB1/IFN-ß: interferon beta 1; IRF3: interferon regulatory factor 3; ISG15: ISG15 ubiquitin like modifier; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; NFKB/NF-κB: nuclear factor kappa B; NSP6: non-structural protein 6; Δ106-108: deletion of amino acids 106-108 in NSP6 of SARS-CoV-2; Δ105-107: deletion of amino acids 105-107 in NSP6 of SARS-CoV-2; RETREG1/FAM134B: reticulophagy regulator 1; RIGI/DDX58: RNA sensor RIG-I; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy/physiology , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Chaperone BiP , Interferons , Amino Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...